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Introduction

We describe classical and quantum dynamics of AdS particle.

On the classical level we analyze the action of AdS particle and
construct the dynamical integrals related to the isometry group.

Using these dynamical integrals we describe particle trajectories
without solving dynamical equations.

To quantize the system we use the static gauge.

Quantum calculations are performed for a particle in AdS2.

We construct the operators for the dynamical integrals, check the
algebra of their commutators and calculate the Casimir number.
The energy spectrum and the corresponding eigenfunctions are
obtained in the coordinate representation.



Particle dynamics in Minkowski space

The action of a relativistic particle of mass m

S = −m
∫ √

ηµν ẋµẋν dτ

ηµν is the metric tensor of (N + 1)-dimensional Minkowski space
with the signature (+,−,−, ...,−).

The action is invariant under the Poincare transformations

xµ → Λµ
ν x

µ + aµ

and the reparametrizations

τ → f(τ)



Dynamical integrals

The Poincare symmetry provides the dynamical integrals

pµ =
∂L

∂ẋµ
= −m ẋµ√

ẋν ẋν

Mµν = pµxν − pνxµ

The Poisson brackets of pµ,Mµν realize the Poincare algebra

{pµ, pν} = 0

{Mµν , pσ} = ηµσpν − ηνσpµ

{Mµν ,Mρσ} = ηµσMνρ + ηνρMµσ − ηνσMµρ − ηµρMνσ

Mab are the generators of space rotations (a, b) = 1, ..., N
M0a generate the Lorentz boosts.
The canonical momenta pµ are constraint by

pµp
µ −m2 = 0



First order action and conformal symmetry

Taking into account the constraint, one gets the action

S1 =

∫ [
pµẋ

µ +
e

2
(pµp

µ −m2)
]
dτ

The variation of S1 with respect to the canonical momenta pµ
provides ẋµ + epµ = 0 and the elimination of pµ results in

S2 = −
∫ [

ẋµẋ
µ

2e
+
em2

2

]
dτ

The limit m→ 0 is well defined for S1 and S2.
It describes the massless particle.

For the massless particle the Poincare symmetry is extended by
invariance under the conformal transformations

ηµν 7→ Ω ηµν e 7→ Ω e



Gauge fixing

We first fix the gauge freedom by

x0 = p0τ

The first order action S1 reduces to

S′
1 =

∫ (
paẋ

a −
p2
0

2

)
where p0 is obtained from the constraint pµp

µ = m2

p0 =
√
p⃗ 2 +m2

One gets 2N canonical coordinates (pa, x
a).

In terms of canonical the dynamical integrals variables become

pa = pa Mab = paxb − pbxa

M0a =
√
p⃗ 2 +m2(xa − paτ)



Quantization

We choose p-representation.
p0 =

√
p⃗ 2 +m2 and pa are multiplication operators.

Mab, M0a are first order differential operators

Mab = ipa ∂b − ipb ∂a M0a = i
√
p⃗ 2 +m2∂a

The boost operators are self-adjoint for the scalar product

< Ψ2 | Ψ1 >=

∫
dNp√
p⃗ 2 +m2

Ψ⋆
2(p)Ψ1(p)

Quantum Casimir number is pµp
µ = m2

The minimal energy is m.
The massless particle corresponds to m = 0.



Geometry of AdS space

AdSN+1 is associated with the (N + 1)-dimensional hyperboloid

X2
0 +X2

0′ −
N∑

n=1

X2
n = R2

embedded in (N + 2)-dimensional space R2,N .
Parameterizing the hyperboloid

X0 = r cos θ X0′ = r sin θ Xn = xn (n = 1, ..., N)

where θ = x0 and r =
√
R2 + xnxn.

One gets the induced metric tensor gµν

g00 = r2 g0n = gn0 = 0 gmn = −δmn +
xmxn
r2



AdS Particle dynamics

The action of AdS particle in embedding coordinates

S = −
∫
dτ

[
ẊAẊA

2e
+
em2

2
+
λ

2
(XAXA −R2)

]

Dynamical integrals

JAB = PAXB − PBXA

Notations: J0n = Kn, J0′n = Ln, J00′ = E.
Since θ is the time coordinate, E is the particle energy.
One finds N equations

EXn = KnX0′ − LnX0, (n = 1, ..., N)

This define a 2-dimensional plane in the embedding space R2,N .
The intersection of this plane with the hyperbola is a trajectory.



AdS Particle dynamics

The action in terms of space-time coordinates

S = −
∫ [

gµν ẋ
µẋν

2e
+
em2

2

]
dτ

In the first order formalism the action becomes

S =

∫ [
pµẋ

µ +
e

2
(gµνpµpν −m2)

]
dτ

The dynamical integrals

JAB = pµV
µ
AB(x)

V µ
AB corresponds to infinitesimal symmetry transformations.



Gauge fixing

For AdS particle we use again static gauge x0 = p0 τ .
After the Hamiltonian reduction we find the action

S =

∫ (
paẋ

a −
p2
0

2

)
dτ

p0 = E is obtained from the mass-shell condition gµνpµpν = m2.

In AdS2 with R = 1 one has

E2 = (1 + x2)2 p2 +m2(1 + x2)

Two other generators at τ = 0 become

K = p
√
1 + x2 L = − E x√

1 + x2



Canonical transformation

The canonical transformation

x = − cotQ p = P sin2Q

Simplifies the symmetry generators

E2 = P 2 +
m2

sin2Q

K = P sinQ L = E cosQ

One gets the Poisson brackets algebra

{E,K} = L {E,L} = −K {K,L} = −E



Quantization

To quantize the system we use the coordinate representation with

E2 = −∂2QQ +
m2

sin2Q

The ground state wave function is given by

ψ0(Q) = sinµQ

µ is the minima energy

µ =
1

2
+

√
m2 +

1

4

The algebra of symmetry generators is provided by the operators

K = −i
√
E(sinQ∂Q)

1√
E

L =
√
E cosQ

√
E



Conclusions

We have quantized AdS2 particle in the static gauge.

The construction of the isometry group generators provides the
realization of the symmetry algebra.

The calculation of the Casimir number yields

E2 −K2 − L2 = m2

The massless case corresponds to m = 0.

The conformal group in 2-dimensions is infinite dimensional.

It is interesting to analyze whether one can realize this infinite
dimensional symmetry for the AdS2 massless particle.


