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In order to study constraints imposed on kinematics of the Crab pulsar’s jet, we consider
motion of particles along co-rotating field lines in the magnetosphere of the Crab pul-
sar. It is shown that particles following the co-rotating magnetic field lines may attain
velocities close to observable values. In particular, we demonstrate that if the mag-
netic field lines are within the light cylinder (LC), the maximum value of the velocity
component parallel to the rotation axis is limited by 0.5c. This result in the context
of the X-ray observations performed by Chandra X-ray Observatory seems to be quite
indicative and useful to estimate the density of field lines inside the jet. Considering
the three-dimensional (3D) field lines crossing the LC, we found that for explaining
the force-free regime of outflows the magnetic field lines must asymptotically tend
to the Archimedes spiral configuration. It is also shown that the 3D case may explain
the observed jet velocity for appropriately chosen parameters of magnetic field lines.

Keywords: Crab; pulsar; acceleration.

1. Introduction

In 2000, the Chandra X-ray Observatory has monitored the Crab nebula and pulsar
in X-rays. The observations led to the discovery of a helium-rich torus, visible as an
east–west band crossing the pulsar region and confirmed the existence of plasma jets
that previously had only been partially observed by earlier telescopes (see Ref. 1).
Temporal monitoring of the motion within the jets showed that along these dynam-
ical features plasma flows at speeds of ∼ 0.4c (see Ref. 2). On the other hand, it is
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generally acknowledged that the principal source of energy driving all processes in
the nebula is the rapidly spinning pulsar, which may force the nearby material to
co-rotate. Rotational character of the plasma motion is clearly seen in the obser-
vations and it is quite reasonable and meaningful to investigate the influence of
the rotation on the plasma dynamics within the jet of the Crab pulsar (henceforth
the jet). The origin of the torus and jet-like features have been numerically studied
in a series of papers (see Refs. 3–5) where the authors have performed relativistic
magnetohydrodynamic simulations, explaining the major properties of the pulsar
outflow. In this paper, we consider dynamics of relativistic outflows analytically,
focusing on the role of rotation in the observed pattern.

The corresponding flows may be kinematically quite complex because the motion
is both rotational and relativistic. According to the standard model of jets, it is
supposed that the magnetic field is strong enough to provide the co-rotation of
plasmas. In particular, the magnetic field in the magnetosphere of the Crab pulsar
varies with distance as follows B ≈ 6.7× 1012 × (R�/R)3 Gauss, where R� ≈ 106 cm
is the neutron star’s radius and R — the distance from its center. It is clear that
close to the star the magnetic induction is of the order of ∼ 6.7×1012 G and nearby
the light cylindera (LC) surface ∼1.6 × 1012 G. One can straightforwardly check
that the ratio of magnetic energy density and relativistic plasma energy density is:

B2

8πγmc2nGJ

≈ 1.6 × 1017

γ
×
(

R�

R

)3

, (1)

where γ is the Lorentz factor of plasma particles, nGJ = B/(Pce) is the Goldreich–
Julian number density and P ≈ 0.0332 s is Crab pulsar’s period of rotation. This
ratio exceeds unity by many orders of magnitude in the whole extent of the magne-
tosphere for physically reasonable values of Lorentz factors. Therefore, under such
conditions, the particles follow the co-rotating magnetic field lines and are acceler-
ated by the centrifugal force. In the course of time, the linear velocity of rotation
increases and it becomes impossible for a particle to remain in the rigid rotation
regime, especially nearby the LC zone. On the other hand, the observational evi-
dence of the outflows from the Crab pulsar confirms that the plasma particles do
go beyond the LC. It can be concluded that close to this area the field lines have to
deviate from the linear configuration, either by twisting in a direction perpendicular
to the equatorial plane, or by lagging behind the rotation, or, most probably, by
twisting in both directions.

In the present paper, we investigate the role of centrifugal force on some dynam-
ical features of the jet-like structure visible in the X-ray images of the Crab pulsar.

Since co-rotation of plasmas is ensured by the presence of strong magnetic field
the corresponding process is called magnetocentrifugal acceleration. A concrete

aA cylinder whose axis is the axis of rotation of a neutron star and whose radius is such that the
velocity of a plasma rotating with the neutron star would equal the velocity of light at the surface
of the cylinder.
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astrophysical application of the magnetocentrifugal acceleration for the pulsar emis-
sion theory was considered in Ref. 6, where the author suggested the centrifugal
acceleration of the charged particles as the efficient mechanism leading to the gen-
eration of high-energy emission. In Ref. 7, a plasma-rich pulsar magnetosphere was
studied for Crab-like pulsars to examine the role of centrifugal force in producing
the high-energy photons. A similar problem was studied for Active Galactic Nuclei
(AGN) in Refs. 8–10 where it was found that the co-rotation of plasma particles
leads to extremely high energy of relativistic electrons, which, in turn, provides TeV
energies for soft photons via the inverse Compton scattering.

In order to mimic the jet situation in a realistic way we consider different geo-
metric configurations for magnetic field lines. As a first example, we consider the
case when magnetic field lines and the axis of rotation are in one plane (that is,
φ = const. for the field lines) and show that charged particles with nonrelativis-
tic initial velocities, independently of a shape of magnetic field line, can attain
longitudinal velocities up to ∼0.5c. The second class of curves is related to those
considered in Ref. 11, where the dynamics of a single particle moving along the
prescribed co-rotating trajectory has been studied. Here we find out that under
favorable conditions centrifugally accelerated particles may asymptotically reach
the force-free regime of motion. A different approach to magnetocentrifugal accel-
eration was proposed in Refs. 12 and 13, although the results were similar to those
obtained in Ref. 11. In general, the mentioned work is a two-dimensional (2D) inves-
tigation, which, for being applied to the jet-like structures needs to be generalized
to the three-dimensional (3D) case.

The structure of the paper is as follows: in Sec. 2, we develop an analytical
method for studying dynamics of the motion of relativistic particles along the pre-
scribed trajectories. In Sec. 3, we present our results and we summarize them in
the Sec. 4.

2. General Formalism

The goal of this paper is to consider dynamics of particles inside the jet. In this
context, we shall study constraints imposed on the motion by the “frozen-in” con-
dition, which prescribes the particles to move along field lines. For this purpose
we generalize the method developed in Ref. 11, where only the flat, 2D, equato-
rial plane trajectories have been considered. In this paper, we develop the more
general model, which allows to consider centrifugally driven particles moving along
arbitrarily general 3D trajectories.

It is well-known that the rotation of the central object i.e. a rapidly rotating
neutron star or Kerr black hole, introduces off-diagonal terms in the spacetime
metric, which can be generally written as (Ref. 14):

ds2 = gttdt2 + 2gtφdtdφ + gφφdφ2 + grrdr2 + gθθdθ2, (2)

with the metric coefficients independent of t and φ. We use geometrical units G =
c = 1. In the nonrelativistic limit this metric reduces to the Minkowskian metric,
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written in spherical coordinates. In the presence of gravity it comprises both non-
rotating (Schwarzschild) and rotating (Kerr) black hole metrics. For instance, the
Kerr metric is written as (Ref. 15):

gtt = −
(

1 − 2Mr

Σ

)
, (3)

gtφ = −2aMr sin2 θ

Σ
, (4)

gφφ = sin2 θ

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
, (5)

grr =
Σ
∆

, (6)

gθθ = Σ, (7)

where a ≡ J/M , Σ ≡ r2 + a2 cos2 θ, ∆ ≡ r2 − 2Mr + a2 and J and M are the
angular momentum and the mass of the central object, respectively. When a = 0, it
reduces to the case of nonrotating black hole (Schwarzschild metric) and if further
M/r � 1 it reduces to Minkowksi metric written in spherical [r, θ, φ] coordinates.

In certain cases of practical interest the metric (2) can be reduced to the one
with cylindrical symmetry. In particular, if we introduce instead of the r and θ

coordinates the [ρ, z] pair via the obvious relations:

ρ ≡ r sin θ, z ≡ r cos θ, (8)

then Eq. (2) takes the following form:

ds2 = gttdt2 + 2gtφdtdφ + gφφdφ2 + gρρdρ2 + 2gρzdρdz + gzzdz2. (9)

Here we have the following connection between new and old metric tensor compo-
nents:

gρρ =
1
r2

[
ρ2grr +

z2

r2
gθθ

]
, (10)

gρz = gzρ =
ρz

r2

[
grr − gθθ

r2

]
, (11)

gzz =
1
r2

[
z2grr +

ρ2

r2
gθθ

]
. (12)

In particular, it is easy to see that for the Kerr metric, from (6) and (7) it follows
that:

gρz = ρzΦ, (13)

gρρ =
Σ
∆

− z2Φ, (14)

gzz =
Σ
∆

− ρ2Φ, (15)
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where

Φ ≡ Σ
r4∆

(2Mr − a2). (16)

These equations show that switching to cylindrical coordinates in the case of
both Schwarzschild and Kerr black holes would bring second off-diagonal element,
gρz, in the metric. That is why it is convenient to develop the theory of prescribed
trajectories based on the (2) metric form.

Apart from the possible rotation of the central massive object, plasma particles
may have kinematically complex motion involving rotation in the spacetime defined
by Eq. (2). As we already mentioned the co-rotation is related with strong magnetic
fields, forcing plasma particles to move along the field lines. The idea of the “pre-
scribed trajectories” method (Ref. 11) is to imprint the shape of trajectories within
the metric itself and to study the dynamics of particles, moving along prescribed
“rails” (field-lines). This assumption essentially means that, in the framework of
the paper, the magnetic energy density exceeds that of the plasma kinetic energy
by many orders of magnitude.

Let us consider, in the rest frame of the central body, the following prescribed
field line configuration:

ϕ = ϕ(r), θ = θ(r), (17)

and let us assume that ω is the angular rotation rate of the central body. Obviously,
the azimuthal coordinate in (2) metric is related with ϕ in the following way:

φ = ϕ(r) + ωt. (18)

Embedding (17) and (18) within the basic (2) metric it is straightforward to derive
the metric tensor for the prescribed trajectories:

ds2 = G00dt2 + 2G01dtdr + G11dr2, (19)

where

Gαβ =

(
gtt + 2ωgtφ + ω2gφφ, ϕ′(gtφ + ωgφφ)

ϕ′(gtφ + ωgφφ), grr + ϕ
′2gφφ + θ

′2gθθ

)
, (20)

α, β = {0; 1},

ϕ′ ≡ dϕ

dr
, θ′ ≡ dθ

dr
.

The dynamics of the particle moving along the prescribed trajectory can be
defined in terms of the Lagrangian:

L =
1
2
Gαβ

dxα

dτ

dxβ

dτ
, (21)

and the following equation of motion

∂L

∂xα
=

d

dτ

(
∂L

∂ẋα

)
, ẋα ≡ dxα

dτ
, (22)

1550042-5



2nd Reading

April 8, 2015 14:47 WSPC/S0218-2718 142-IJMPD 1550042

G. Irakli, O. Zaza and R. Andria

where

x0 ≡ t, x1 ≡ r.

Since t is the cyclic coordinate, the corresponding component of the generalized
momentum is the conserved quantity. One can show that Eq. (22) for α = 0 gives
the expression of the particle’s energy:

E = −γ(G00 + G01v) = const., (23)

where v ≡ dr/dt is the radial velocity and

dt/dτ ≡ ut ≡ γ =
(−G00 − 2G01v − G11v

2
)− 1

2 (24)

is the Lorentz factor of the particle in the laboratory frame (LF). Combining
Eqs. (23) and (24) one can write a quadratic algebraic equation:

v2(G2
01 + E2G11) + (G00 + E2)(2vG01 + G00) = 0 (25)

with the solution that explicitly defines the radial velocity:

v =
√

G00 + E2

(G2
01 + E2G11)

[
−G01

√
G00 + E2 ± E

√
G2

01 − G00G11

]
, (26)

where different signs are related with different initial conditions.
Hereafter, we neglect gravitational effects and restrict ourselves with the study

of the special-relativistic case. In other words, we study motion of particles along
prescribed trajectories in the Minkowskian spacetime. In this particular case, grr =
1, gθθ = r2, and as it is clear from (10)–(12), gρρ = gzz = 1 and gρz = 0. This
is a considerably simplified case, where the spacetime metric can be written in
cylindrical coordinates in the following way:

ds2 = −dt2 + ρ2dφ2 + dρ2 + dz2, (27)

writing prescribed trajectory definition also in cylindrical coordinates:

ϕ = ϕ(ρ), z = f(ρ), ϕ′ ≡ dϕ

dρ
, f ′ ≡ df

dρ
, (28)

we can apply the above analysis to this case. Evidently for the Gαβ metric now we
have:

Gαβ =

(−1 + ω2ρ2, ωϕ′ρ2

ωϕ′ρ2, 1 + ϕ
′2ρ2 + f

′2

)
. (29)

3. Results

In this section, we are going to consider one class of physically interesting configura-
tions of prescribed trajectories (field lines). As a first example (Sec. 3.1), we examine
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the field lines, which are in the same plane with the axis of rotation: ϕ =const.,
z = f(ρ) and in the next section we consider 3D spirals: ϕ = ϕ(ρ), z = f(ρ), which
might be especially interesting for studying force-free regime of frozen-in particle
motion dynamics. Although we have no definitive clue which of these cases will
be realized in reality, still we are able to show that under certain conditions these
results might explain the particle kinematics inside the jets.

3.1. ϕ = const., z = f(ρ)

Let us study dynamics of particles for the prescribed trajectories in the rotating
frame (RF), described by ϕ = const., z = f(ρ). By taking into account Eq. (29),
one can rewrite Eq. (26):

v =
[
1 − ω2ρ2

1 + f ′2

(
1 − 1 − ω2ρ2

E2

)] 1
2

, (30)

where

E = γ0(1 − ω2ρ2
0), (31)

and γ0 and ρ0 are particle’s initial Lorentz factor and its initial distance from the
rotation axis, respectively.

To express the longitudinal velocity (along the field lines), υ‖ ≡ dl/dt, by the
radial velocity, we can write dl/dt = (dl/dρ)(dρ/dt), which after taking into account
dρ/dt = υ, dl/dρ =

√
1 + f ′2 and Eq. (30) leads to

v‖ =
[
(1 − ω2ρ2)

(
1 − 1 − ω2ρ2

E2

)] 1
2

. (32)

Theoretical analysis shows interesting features of Eq. (32). In particular, it is clear
that v‖ does not depend on a particular shape of a field line. Furthermore, it is worth
noting that if the field line approaches the LC, then particle’s longitudinal velocity
must decrease, completely vanishing on the LC surface. Indeed, from Eq. (32) it is
clear that when ρ → Rlc (Rlc ≡ c/ω is the LC radius), then v‖ → 0. Such a behavior
is expected, because on the LC surface the linear velocity of rotation exactly equals
the speed of light, which logically requires that another component of the velocity
has to vanish: v‖ → 0.

If one considers Eq. (32) in the context of outflows, then it is reasonable to study
an asymptotic behavior of v(ρ), for the region: ρ < Rlc. According to the observa-
tional evidence, it is clear that the jets are characterized by highly collimated flow
structures. In order to mimic the real jets let us consider a field line configuration,
with the following asymptotic behavior: ρ → R, z → ∞ (here R ≤ Rlc). If this
is the case, then the jet is fully located inside the LC surface and particles keep
moving along the field lines.

To analyze Eq. (32), one has to note that for ρ � Rlc and ρ ≈ Rlc the
velocity vanishes, therefore v‖ must have maximum in the interval: 0 < ρ < Rlc.

1550042-7
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For simplicity let us introduce a dimensionless parameter α ≡ ρ/Rlc, then Eq. (32)
reduces to:

v‖(α) =
[
(1 − α2)

(
1 − 1 − α2

E2

)] 1
2

. (33)

Apparently, the velocity v‖(α) attains its maximum value when:

dv‖(α)
dα

= 0, (34)

which has the following solution:

α =

√
1 − E2

2
, (35)

leading to an expression for vmax
‖ ;

vmax
‖ =

E

2
. (36)

Since we are interested in the role of rotation in the acceleration process, it
is reasonable to consider initially a nonrelativistic particle (v0 � 1) located on
the axis of rotation (ρ0 = 0). From Eq. (31), one can show that the maximum
possible velocity might be attained for α = 1/

√
2 and the corresponding value

equals vmax
‖ = 0.5.

In Fig. 1, we show the dependence of the longitudinal velocity on the dimension-
less distance. It is clear that at approximately 0.7Rlc (Rlc/

√
2 is the exact analytic

value) the velocity reaches its maximum value: 0.5. This result can be interpreted
as follows: if we assume that magnetic field lines have asymptotes (parallel to the
axis of rotation) on Rlc/

√
2, the longitudinal velocity of the particles will be limited

by 0.5.
One has to note that this velocity is not the jet velocity itself. Therefore, it is

interesting to discuss this particular problem in more detail. As we have already
specified, charged particles moving along the magnetic field lines with asymptotes
along the axis of rotation, “create” a bulk flow-jet. In order to determine the velocity
of the whole jet, we should take into account all particles. We introduce a quantity
d(ρ) describing the density of asymptotic magnetic field lines. By setting up the
normalization condition

∫ Rlc

0 d(ρ)dρ = 1 one can directly calculate the velocity
of a jet

vJet =
∫ Rlc

0

d(ρ)v‖(ρ)dρ, (37)

where we have assumed that the particles are uniformly distributed on the field
lines. Let us assume that in the asymptotic region the field lines are distributed
uniformly as well. Then, for the jet velocity one obtains the value 1/3, but the obser-
vations show that the bulk flow along the Crab jet moves approximately with 0.4.
This means that the magnetic field lines must not be distributed uniformly and
density of field lines has to be a continuously increasing function close to the LC

1550042-8
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Fig. 1. The dependence of the longitudinal velocity on the dimensionless distance. It is assumed
that initially particles are nonrelativistic, E = 1.

surface. For example, one can check that the best fit to observations (vJet ∼ 0.4) is
provided by the following behavior of the density of asymptotic field lines: d ∝ ρ9/5.

3.2. ϕ = ϕ(ρ), z = f(ρ)

In Ref. 11, the motion of a single particle, sliding along a curved rotating channel
(located in the equatorial plane) has been studied. It was shown that under certain
conditions, if the particles follow trajectories having a shape of the Archimedes
spiral, the flow may become asymptotically free, reaching sufficiently high Lorentz
factors at the infinity. It is natural to generalize the approach developed in Ref. 11
for 3D case and check when and how can centrifugally accelerated particles, moving
along prescribed 3D trajectories, go beyond the LC.

The goal of this section is twofold: for this particular choice of the prescribed
3D trajectories we would like to: (a) understand how particles achieve the force-
free regime for ρ → ∞ and (b) intend to explain the jet velocities observed by
the Chandra X-ray Observatory. In this context, for proper initial conditions, it is
useful to specify from Eq. (26), the asymptotic behavior of the radial velocity:

v → −ω

ϕ́
+

1
ρ2ωϕ́

(
E2 − 1 +

E
√

ϕ́2 − ω2(1 + f ′2)
ϕ́

)
, (38)
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which makes sense if both conditions |ϕ′| ≥ |ω
√

1 + f ′2| and ϕ′ < 0 are simulta-
neously fulfilled. Then, as we see, the particles will reach infinity with the radial
velocity asymptotically tending to ω/|ϕ́|. The reason why particles can cross the
LC, without violating the causality principle of relativity is hidden in Eq. (38).
In particular, assuming {|ϕ′|, |f ′|} < ∞ it is clear that Ω ≡ ω + vϕ′ ∝ 1/ρ2,
which in turn is nothing but the so-called effective angular velocity of rotation (see
Ref. 11, Eq. (11)). Therefore, the trajectory of the particle in the lab frame must
asymptotically become a straight line. The aforementioned behavior does not mean
the acceleration is inefficient and the role of centrifugal effects is insignificant. In
particular, as it is clear from the definition of the effective angular velocity, the
asymptotic radial velocity (and hence the total velocity) depends on a shape of
the spiral, −ω/ϕ́, which means that the particles reaching extremely high values of
Lorentz factors in the force-free regime move along the magnetic field lines with a
different parameter, ϕ́. Therefore, to study the overall picture of dynamics one has
to take into account different Archimedes spirals allowing different Lorentz factors
of particles.

On the other hand, since the force-free motion is characterized by constant
velocity, then both, ϕ′ and f ′ must asymptotically tend to constant values.

For studying the prescribed trajectories satisfying the mentioned conditions, it
is more convenient to write down an expression for the radial acceleration:

ρ̈ = ρΩ
ω − γ2v[ϕ′ + (1 + f

′2)ωv]
γ2[(1 + f ′2)(1 − ω2ρ2) + ϕ′2ρ2]

. (39)

As it is evident from this expression, the radial acceleration is proportional to the
effective angular velocity, which, as we have already seen, asymptotically vanishes
and completely terminates the subsequent acceleration.

It is worth noting that the jet velocity, vJet ≡ dz/dt, is expressed as follows:
vJet = ω|f ′/ϕ′|. Apart from that, according to the observations, the jet of the Crab
pulsar has the velocity of the order of 0.4, which means that the two functions
describing the field configuration asymptotically must yield the following condition:
|f ′/ϕ′| = 0.4/ω.

In Fig. 2 (top panel), we show the trajectories of a particle in (a) the rotational
frame of reference and (b) the laboratory frame of reference, respectively. On graphs
(c) and (d) the behavior of the curvature (κ ≡ 1/Rc, where Rc is the curvature
radius of magnetic field lines) and jet velocity is shown respectively. The set of
parameters is: ϕ′ = −28, f́ = 11, v0 = 0.01 and ρ0 = 0. As it is clear from the
graphs, if the particle’s trajectory in the RF is presented by the spiral (see a), from
the point of view of an observer in the LF the trajectory asymptotically becomes a
straight line (see b). With the plot shown on the bottom panel — (see c), we show
the time dependence of the curvature normalized on the initial value. As it is clear
from its behavior, in due course of time the curvature tends to zero, which means
that the trajectory becomes rectilinear and the particle dynamics reaches the force-
free regime. In particular, as we see on plot (d), the jet velocity initially increases

1550042-10
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Fig. 2. On the top panel we show the particle trajectories in (a) the rotational frame of reference
and (b) the LF of reference respectively. On graphs (c) and (d) the behavior of the curvature
(κ ≡ 1/Rc, where Rc is the curvature radius of magnetic field lines) and jet velocity is shown
respectively. The set of parameters is: ϕ′ = −28, f́ = 11, v0 = 0.01 and ρ0 = 0.

and asymptotically tends to 0.4. The aforementioned parameters are chosen so that
the numerical results to be in a good agreement with the observations. In Fig. 3,
we show the trajectories of particles in the laboratory frame of reference. As it is
clear from the figure, the envelope of the trajectories produces the conical surface,
that was initially determined by our choice — see plot (a) in Fig. 2. It is worth
noting, that this choice was natural because, for the outflow to be in the force-free
regime, the only way is to have the 3D spiral form (in the RF) with the properties
of the Archimedes spiral.

On the other hand, as it has already been shown, such a configuration of mag-
netic field might be guaranteed by the curvature drift instability, inevitably leading
to the creation of a toroidal component of magnetic field (see Ref. 16). This in turn,
changes the structure of field lines, asymptotically acquiring a shape of Archimedes
spiral, that finally suspends the consequent amplification of the toroidal magnetic
field (see Ref. 17). It is worth noting that in the framework of a rather different
approach the same configuration of magnetic field lines has been derived in Ref. 18.
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Fig. 3. The graph shows the trajectories of particles in the laboratory frame of reference for
several field lines. The set of parameters is the same as in the previous graph, except the initial
angular shifts of exactly the same field line configurations.

4. Summary

(1) For the general gravitational field produced by a rotating object, the method
for studying particle dynamics on prescribed, rotating, 2D and 3D trajectories
has been developed.

(2) We have examined two cases of prescribed trajectories. As a first example,
field lines asymptotically becoming parallel to the axis of rotation have been
studied. It was shown that if these lines are inside the LC surface, for initially
nonrelativistic particles, the maximum attainable velocity along the axis of
rotation must be limited by 0.5c. We have also discussed the compatibility of
this result with observations (stating that the velocity of the Crab jet is of
the order of ∼0.4c) and we have shown that in order for the theory to be in
a good agreement with observations the best fit for the behavior of density of
asymptotic field lines must be given as ρ9/5.

(3) We also studied a 3D generalization of spiral trajectories, examined in Ref. 11.
It has been shown that under certain conditions, particles following the co-
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rotating field lines, will asymptotically reach the force-free regime of motion if
the 3D field-lines are of the shape of Archimedes spiral. We have found that
for properly selected parameters one can explain the observed numerical value
of the velocity of the jet.

The aim of the paper was to show a role of rotation in the jet-like structure of
the Crab pulsar. The study was only focused on the dynamic behavior of particles,
moving along prescribed (in the RF) co-rotating channels.

An important restriction in the present model is the consideration of a single
particle approach, whereas it is clear that in a general case dynamics of particles is
strongly influenced by collective phenomena. Therefore, it would be interesting to
explore the dynamics of magnetocentrifugally accelerated particles in this context.

The formalism developed in Sec. 2 is valid for both Schwarzschild and Kerr black
holes even though in the subsequent analysis we completely neglected the gravi-
tational effects and considered only a special-relativistic case. One of the tasks of
further study will be to check how magnetocentrifugal acceleration along prescribed
trajectories works in fully relativistic situations and physically realistic astrophysi-
cal scenarios.
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